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A STOPPED PIPE

B. L. Krivoghein, V. P. Radchenko, and M. G. Khublaryan

Inzhenerno-Fizicheskii Zhurnal, Vol. 13, No. 2, pp. 168-176, 1967

UDC 536. 244:662. 959. 63

Nonisothermal unsteady flow of a real gas in a pipe is studied. A
numerical method is given for solving a system of quasi-linear dif-
ferential equations that describe the flow of a real gas in a stopped
pipe. The calculated results are discussed.

1. Using the equations of conservation of mass,
motion, and energy in the form of[1], the equation of
state of a real gas in Berthelot form, and ignoring, as
usual {1], the change in the geometric height and ve-
locity of the gas along the coordinate and with respect
to time, we obtain
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Under these assumptions, the problem boils down
to finding the solution P = P(x,t), T = T(x,t), and G =
= G(x, t) of system (1) in the domain Dy, (0 = x = L,
t = 0), which satisfies the initial conditions

P(x, 0) =[x} T(x, )=9() O<x<i), (2)

and the boundary conditions

G(0, /) =0; G(L, #) = 0. (3)

With this formulation, solution of system (1)—(3)
in finite analytic form involves insurmountable diffi-
culties. Therefore, a numerical method for solving
this boundary-value problem on a computer is proposed
below.

2. For convenience of computer solution, we shall
transform system (1)—(3). ¥ we eliminate 8G/8x from
the first equation and solve the new system for the
derivatives 8P/5t and 9T/8t, and if we also usethe di-
mensionless variables P? = P/P,, T¢ = T/Te, G =
= G/Gy, x0 =x/L, and t? = te/L, we obtain
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The boundary conditions in the case in question ob—
viously have the form

G0, #©)=G(1, #)=0. ()

The intitial distribution P’, T', and G%¢® < 0) is the
solution of the system of equations obtained from (4)
provided that the derivatives of the unknown functions
with respect to time are zero:
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where ¢, = acyLGJ/T¢ and n, = anL/GH.

Let us replace the derivatives of system (4) at the
nodes of the rectangular network by the difference re-
lations
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By analogy with the linear case for hyperbolic equa-
tions, we replace 8T0/8x at the node (i, k) by the dif-
ference relation (T1 kg~ T1 x)/h or (T1 Kk~
- T1_1 x)/h, accordmg to the sign coefflclent of the
derivative in (7) into the second equation of (4). K we
substitute (7) into (4), we obtain a system of difference
equations that approximate (4):
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where n is thenumber of intervals the integration range
(0 = x% = 1) is divided into; and @ =t/h% h=1/n; B, =
=b/Po; By = by{te/Pg); By = by{ L/cPe); Cy = ey(L/
cPg); Ny =ng(L/cPg) .

The values (z¢T%;_,/,, k+ and (Z°To)i+1/2:k+1 are
found by linear interpolation between the values at
adjacent modes. Formulas (8) approximate Eqs. (4)
with accuracy to O(h).

Let us discuss approximation of the boundary con-
ditions. As can be seen from Egs. (5), all of the un-
known functions at the boundary nodes, which are sit-
uated on the lines x0 = 0 and x¢ = 1, cannot be deter-
mined from the boundary conditions. For the boundary
nodes we must obtain difference relations that approx-
imate the differential equations at the boundaries. We
will assume that Eqs. (4) are also satisfied at the
boundarles x" = 0 and x0 = 1. If we eliminate o (PY2/
/8(x")? from (4), we obtain
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If we approximate the second equation of (9) at the
boundary nodes (0,k + 1) and (n,k + 1), we find
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Here, the derivative B(PO)Z/ ox” is represented at the
boundaries by one-sided differences. Considering (5),
we obtain

Poari=Plasis Phasi=Phise (=0, 1,2, ..). (11)

Approximation of the first equation of (8) at the
boundary nodes (0, k) and (n, k) results in difference
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Fig. 1. Pressure stabilization curves: 1) t? = 0; 2) 0. 25;
3) 0.5; 4) 1.0; 5) 1.5; 6) 2.0.
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Fig. 2. Temperature stabilization curves: 1) t* = 0; 2) 0.25;

3) 0.5;4) 1.0; 5) 1.5; 6) 2.0.
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Fig. 3. Temperature and pres-

sure at ends of pipe versus time:

1) P°(0); 1) T%0); 2) PY(1); 2%
TY(1).
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Fig. 4. Flow-rate stabilization
. curves: 1) t' = 0; 2) 0.25; 3) 0.5;
4) 1.0; 5) 1.5;6) 2.0; ) 2.25,
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Fig. 5. Temperature at ends of pipe versus time: 1)
T%0); 2) T(1); 3) T4 .
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Relations (6) and (12), together with boundary con-
ditions (5), represent a complete system of equacions
for determining the unknown functions at the boundary
nodes on the lines x0 = 0 and x0 = 1. The order of er-
ror in this boundary-condition approximation is 0(h).

3. The explicit difference scheme (7), (11), and
(12) was used in the numerical solution [6}. The pro-
gram for the BESM-2M computer has two parts.

The first part, on the basis of a standard program,
solves system (6) of ordinary differential equations
by the Runge-Kutta method with a constant step h for
finding the initial distribution P’(0,x% and T%0,x"%.

The second part realizes calculation by difference
scheme (7), (11), and (12). The program permits vari-
ations of the step h within the limits of the operational
memory and operates with information that is com~
pletely storable in the operational memory without the
use of magnetic drums and tapes, except for the cases
provided for by the internal instructions of the compu-
ter or standard subroutines.

4. As an example, a calculation was made with the
following initial data: . = 100 km, D=0.7m, Py =
=55+10N/m?, Gy = 100 kg/sec, Ty = 320° K, and
T, = 285° K. The gas was methane; P, = 45.8+ 10" N/
/m? and T, = 190° K.

The initial conditions were (19< 0): G0 =1, x0=
=0, T'=1.67, P’ = 1.2 (for solving system (6)).

The boundary conditions were (t0 > 0): =0, q =
0;x" =1, ¢* = 0.

Figure 1 shows curves of pressure stabilization
after stopping of the pipe. With time, at the left end
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(x? = 0) the pressure drops, owing to returnflowfrom
the higher-pressure region to the lower-pressure re-
gion. On the right end (x° = 1) the pressure increases,
as compared with the steady value. It is interesting

to note that at the point x0 = 0. 55 the pressure remains
constant during stabilization and equals the steady
value P°(0; 0.55).

An approximation formula for determining thelength
19 of the segment to the constant-pressure point dur-
ing stabilization under isothermal conditions is given
in [6]. As applied to our conditions, 10 = 0.55.

With isothermal gas motion, the pressure remains
constant at the point x0 = 0.50 [4,5]. Thus, the for-
mulas in [3,4] give results that differ by 5—~10% from
the numerical solutior. for nonisothermal gas motion.
The position of the constant~pressure point is a func~-
tion of the temperature distribution along the length of
the pipe.

Figure 2 shows curves of the temperature depres-
sion along the pipe for different times. It is apparent
from Fig. 2 that at the left end the gas temperature
decreases with time due to the Joule-Thomson effect,
since PY%0, t’) becomes less than PO( 0, 0). On theright
end, Po(l, to) increases and, therefore, the real-gas
temperature increases (up to the moment of pressure
stabilization). Figure 3 shows curves of pressure(l,
2) and temperature (11, 2%) versus time. When t* =
= 2-3, the pressure-stabilization process is prac-
tically completed. During this time, the gas front, at
the speed of sound, covers a distance of twice (or
three times) the length of the pipe. The gas flow is
practically stopped at t° = 2-3.

Figure 4 shows curves of the mass flow-rate dis-
tribution along the pipe at various times. It can be
seen that when t’= 2-3, G® — 0, i.e., the gas flow
is stopped for all practical purposes. The pressure-
stabilization time for the conditions of our example is,
as calculated by the approximation formula in[3], about
15 min. Numerical calculation gives a similar result
of 10—12 min. Thus, the formula in [3] can be used
for practical applications. After stopping of the gas,
due to heat transfer with the ground, the temperature
at the right and left ends begins to drop and when
t? — « it becomes equal to t0 (Fig. 5). The temper-
ature curve corresponding to the right end of the pipe
(x0 = 1) passes through a maximum at t= 2. In prac-
tice, when t° = 100 the gas temperature is stabilized,
i.e., it reaches the ground temperature. After pres-
sure stabilization, the last equation of system (1)takes
the form

dar n(z) T
&= T—DT. (13)

If we integrate (13), after reduction to dimension~

less form we obtain
(i (T8 -
T°=T811—(1~F) exp[— B — O} (14)
1

where = KrDRz,T)L/c_fP_c;t} is the time for
pressure stabilization to P‘I’n; and T, is the gas tem-
perature at the moment of pressure stabilization.
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If we solve (14) for K, we find
B ( T T

where 8y = ¢ f Pye/m DRz Ty L.

The temperature distribution after pressure stabi-
lization (Fig. 5) is calculated by formula (14).

If we measure the temperature variation during
stabilization, we can, using formula (15), determine
the mean value of the coefficient of heat transfer from
the pipe to the ground (K).

NOTATION

G is the weight flow rate; P is the pressure; T is
the temperature; f and D are the cross-sectional area
and tube diameter, respectively; A is the hydraulic
resistance coefficient; R and ¢, are the gas constant
and isobaric heat capacity; ¢ is the speed of sound in
gas; A is the thermal equivalent of work; K is the
heat transfer from gas to soil with Newton~law temper-
ature distribution; z; is the compressibility coefficient
{from Berthelot state equation [2]); P, and T, are the
critical parameters of the real gas; t is the time; x is
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the coordinate; 7 and h are the time interval and co-
ordinate, respectively.
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